9.kafli: Að lesa logra og lograjöfnur

Segja má um logra ađ viđ notum pá ekki mikiđ í amstri daglegs lífs. Pannig peir virka peir frekar dularfullir við fyrstu sýn. Hvađ gera pessir dularfullu log-og In-takkar á reiknivélinni?
9.110 - lograr

Pađ fyrsta sem gott er ađ vita er ađ logri Log pýđir veldi, nánar tiltekiđ veldi međ grunntöluna 10 p.e. $10^{x}=\log 10^{x}=x$.

$$
\begin{aligned}
& \text { Frægustu lograrnir eru: } \\
& 10^{1}=10 \text { pá er } \log 10=1 \\
& 10^{2}=100 \text { pá er } \log 100=2 \\
& 10^{3}=1000 \text { pá er } \log 1000=3 \\
& 10^{4}=10000 \text { pá er log } 10000=4
\end{aligned}
$$

Log takkinn á reiknivélinni pinni svarar spurningunni 10 í hvaða veldi er talan $10 \times ?$

Dæmi:
$\log 10=1$ pví ađ $10^{1}=10$
$\log 100=2$ pví að $10^{2}=100$
$\log 1000=3$ pví ađ $10^{3}=1000$
$\log 10000=4$ pví ađ $10^{4}=10000$

Oft er talað um veldisvöxt t.d 10 í veldinu x 10^{x}. Ef við teiknum upp veldisfallið í hnitakerfi sést vel hversu hratt falliđ vex. Búum til gildistöflu:

x	$f(x)=10^{x}$	y
1	$f(1)=10^{1}$	10
2	$f(2)=10^{2}$	100
3	$f(3)=10^{3}$	10000
4	$f(4)=10^{4}$	

Teiknum nú falliđ inn í hnitakerfið

Pú sérð hversu hratt ferillinn vex upp á viđ. Oft er talađ um veldisvöxt.

Pessum ferli er log takkinn ad lýsa á reiknivélinni.

Dæmi:
$\log 9=0,9542$ pá er $10^{0,9542}=9$
$\log 90=1,9542$ pá er $10^{1,9542}=90$
$\log 900=2,9542$ pá er $10^{2,9542}=900$
$\log 9000=3,9542$ pá er $10^{3,9542}=9000$
Fróðlegt er ađ bera saman pessar niđurstöður og myndina af lografallinu

Á neđra borði reiknivélarinnar í gegnum SHIFT-takkann kemur skipunin 10x sem er andhverfuskipun fyrir Log takkann.

Dæmi:

$\log 100=2$ pá getur pú gert:
SHIFT $\log =10^{x}=10^{2}=100$.

Pađ má pví segja að log takkinn á reiknivélinni sé uppflettitakki sem pú getur spurt um hvaða veldi af 10 talan hafi.

Dæmi:
$\log 110=2,041392685$
sem pýđir ađ $10^{2,041392685}=110$

Einnig er í gegnum SHIFT-takkann hægt aơ nálgast á reiknivélinni skipunina 10^{x} bá get ég spurt reiknivélina um allar tölur í x-ta veldi međ grunntöluna 10.

Dæmi:
SHIFT $\log =10^{\mathrm{x}}$ Athugum töluna $10^{2,041392655}=110$.
10 í veldinu $2,041392685=110$.

Segja má aơ petta sé eins og hringur.

$\log 100=2$	og	Shift $\log 2=100$.
$\log 1000=3$	og	Shift $\log 3=1000$

9.2 Náttúrulegir lograr

Paơ eru tvö lograkerfi á reiknivélinni pinni. Annars vegar er 10 logrinn log takkinn og hinsvegar náttúrulegi logrinn In-takkinn sem er í raun alveg eins nema grunntalan er ekki 10 heldur hiơ dularfulla $\mathrm{e}=2,7182818281 \ldots$..., sem pú finnur á reiknivélinni pinni, SHIFT \ln e $1=$. Grunntalan er sem sagt á neơra borơi reiknivélarinnar. Í menntaskóla var mér sagt ađ náttúrulegi logrinn kæmi íl lós í efnaferlum i náttúrunni. Međ nátú́rulegum logra getur pú skrifaõ allar tölur sem veldi af grunntölunni ex. Sjá međ̈fylgjandi dæmi.

Dæmi:
Pađ býđir ađ ég get skrifað töluna $=e^{4,605170186}$
$\ln 100=4,605170186$
Eðа $2.71821828^{4,605170186}=100$

Pannig getur pú á reiknivélinni pinni umskrifađ allar tölur sem veldi bæđi međ grunntöluna 10 og e. Í raun er hægt að skrifa allar tölur sem veldi međ hvaða grunntölu sem er, t.d. $2^{x}, 5^{x}$ eđa 12^{x}. Reyndar er hægt ađ nota 10 logrann, sem túlk á milli veldakerfa. Skođum pađ ásamt premur lograreglum.

9.3 Lograreglur

Lograreglurnar eru prjár. Gott er ađ rifja upp ađ: Log=veldi. Pví má í raun segja að lograreglurnar séu veldareglur. Oft er gott ađ læra af samanburði. Berum nú saman veldareglurnar og lograreglurnar.

9.3.1 Regla 1

```
ax}\cdot\mp@subsup{a}{}{y}=\mp@subsup{a}{}{x+y
```

par sem margfeldi talna í veldi er í raun samlagning á veldaplaninu.

$\log (A \cdot B)=\ln A+\ln B$

par sem margfeldi er samlagning veldanna.

Dæmi:
Petta má sannreyna međ reiknivélinni
$\log 20+\log 5=2$ pví ađ $10^{2}=100$
9.3.2 Regla 2
$a^{x} / a^{y}=a^{x-y}$
par sem deiling talna í veldi er í raun frádráttur á veldaplaninu.
$\log (A / B)=\log A-\log B$
par sem deiling er frádráttur veldanna.

Dæmi:

$\log 200-\log 2=\log 200 / 2=\log 100=2$
petta má sannreyna á reiknivélinni.
$\log 200-\log 2=2$ par sem $10^{2}=100$

9.3.3 Regla 3

$$
\left(a^{n}\right)^{m}=a^{n \cdot m}
$$

par sem veldi í veldi er margfeldi.
$\log A^{y}=y \cdot \log A$
par sem veldi í veldi er margfeldi.

Dæmi:
$\log 2^{3}=3 \cdot \log 2=0,903089987$
$\log 8=0,903089987$ bví að $10^{0,903089987}=8$

Veldareglur og um leið lograreglur eru svolítið snúnar.

1. Margföldun pýđir samlagning.
$\log (A \cdot B)=\log A+\log B$
2. Deiling pýđir frádráttur.

$\log (A / B)=\log A-\log B$

3. Veldi í veldi pýđir margfeldi.
$\log A^{y}=y \cdot \log A$

Alveg eins má skrifa veldareglurnar fyrir nattúrulegan logra.

1. $\ln (A \cdot B)=\ln A+\ln B$
2. $\ln (A / B)=\ln A-\ln B$
3. $\ln A^{y}=y \cdot \ln$

Paむ sem er flott við logra er að međ ađstoむ peirra getum við leyst jöfnur sem eru óleysanlegar á talnaplaninu. Reyndar međ peirri snjöllu aðferð ađ setja veldaplaniđ niđur á talnaplaniđ og leysa jöfnuna par.
9.4 Lograjöfnur

Hægt er ađ nota lograreglurnar til pess ađ leysa jöfnur sem annars væru óleysanlegar.

```
Dæmi:
2x}=
Setja log
í báđar hliđar. milli 4 og 8.
log2x}=\operatorname{log}
Pá er hægt ađ nota lograreglu 3. logAy = ylogA }
x\cdot\operatorname{log}2=\operatorname{log}5 Leysa fyrir x.
x = log5 / log2
x=2,321928095
```

Prófun: $\quad 2^{2,321928095}=5$

Segja má ađ pú getir fundið veldi međ grunntöluna 2 međ ađstoむ 10 logra. 2x $=A$.

Dæmi:
$4 \cdot 3^{2 x}=9 \quad$ Deila međ 4 í gegnum jöfnuna
$3^{2 x}=9 / 4=2,25 \quad$ Setja log í báðar hliđar
$\log 3^{2 x}=\log 2,25 \quad$ Nota $\log A^{y}=y \cdot \log A$
$2 x \cdot \log 3=\log 2,25$
$x=\log 2,25 / 2 \cdot \log 3 \quad$ Einangra fyrir x
$x=0,369070246$

Prófun: $4 \cdot 3^{2 \cdot 0,369070246}=9$

Skođum nú lograjöfnu sem leyst er međ lograreglum 1 og 2.

Dæmi:

$\log x=\log 6+\log 12 \quad$ Regla $1 \log A+\log B=\log A \cdot B$
$\log x=\log 6 \cdot 12$
$\log x=\log 72 \quad$ Tekiđ \log úr báđum hliđum
$x=72$

Prófun á reiknivél.
$\log 72=1,857332496$ og $\log 6+\log 12=1,857332496$

Hér er annað dæmi.

```
Dæmi:
log}x=\operatorname{log}100-\operatorname{log}4\quadRegla 2 log A - logB = log A / B
logx= log 100/4= log25
logx = log 25 Taka log úr báđum hliđum
x=25
```


9.5 Vísisföll

Vísisföll sem eđlilega ættu að heita „veldisvísisföll" eru t.d. hjá jöfnu beinnar línu $y=h x+b$. Pá er x-iđ á veldaplaninu pannig ađ veldajafnan verđur $y=a x$. Segja má ađ viđ séum búin ađ skođa veldajöfnurnar.

$$
10^{x}=\log o g e^{x}=\ln
$$

Skoðum nú tvær veldajöfnur:

$$
y=2^{x} \text { og }(1 / 2)^{x}
$$

Ég minni á ađ veldisvöxturinn (ferillinn) fer hægt af stað og vex svo hratt meira ađ segja mjög hratt.

Dæmi:

Kanna feril fallsins $y=2^{x}$
Búum til gildstöflu og reiknum fallið

x	$y=2^{x}$	y
-2	$y=2^{-2}$	0,25
-1	$y=2^{-1}$	0,5
0	$y=2^{0}$	1
1	$y=2^{1}$	2
2	$y=2^{2}$	4
3	$y=2^{3}$	8
4	$y=2^{4}$	16

Nokkur atriði sem einkenna ferilinn $y=2^{x}$

1. Hann skery - ásinn í (0,1), pví $\mathrm{a}^{0}=1$
2. Hann vex mjög hratt til hægri, í + áttina, t.d. er $2^{10}=1024$
3. Hann myndar ađfellu ađ x - ás til vinstri í mínusáttina

Dæmi:

Kanna feril fallsins $y=(1 / 2)^{x}$
Búum til gildistöflu og teiknum fallið

x	$y=(1 / 2)^{x}$	y
-4	$y=(1 / 2)^{-4}$	16
-3	$y=(1 / 2)^{-3}$	8
-2	$y=(1 / 2)^{-2}$	4
-1	$y=(1 / 2)^{-1}$	2
0	$y=(1 / 2)^{0}$	1
1	$y=(1 / 2)^{1}$	0,5
2	$y=(1 / 2)^{2}$	0,25

Nokkur atriđi sem einkenna ferilinn $y=(1 / 2)^{x}$

1. Hann skery -ásinn í (0,1) pví ađ $^{0}=1$
2. Hann vex mjög hratt til vinstri, í mínusáttina, t.d. $(1 / 2)^{-10}=1024$
3. Hann myndar aðfellu adx - ás til hægri, í plúsáttina

Pað má segja að pað ađ hugsa stærđfræðireglurnar og tölurnar á veldaplaninu sé ný og öðruvísi nálgun en ađ vinna á talnaplaninu a^{n} par sem a er talnaplanið og ${ }^{n}$ er veldaplaniđ. Reglur umbreytast eftir pví hvort planiđ pú ert ađ horfa á. Pví má segja ađ lograkerfin log og ln séu nokkuđ sérstök. Pað er von mín ađ pú hafir skilið petta vel og sért orđin/n logralæs. Pað er heillandi að skilja nýjan heim tákna og reglna ., lograheiminn".

9.6 Hugtakaskrá

e: Grunntala náttúrulegra lograkerfisins. $\mathrm{e}^{1}=2,71828182$

In: Náttúrulegur logri. Takki á reiknivélinni

In veldareglur: Pær eru prjár:

1. $\ln (A \cdot B)=\ln A+\ln B$
2. $\ln (A / B)=\ln A-\ln B$
3. $\ln A^{y}=y \cdot \ln A$
log: 10 logri. Takki á reiknivélinni

Lograreglurnar: Pær eru prjár:

1. $\log (A \cdot B)=\log A+\log B$
2. $\log (A / B)=\log A-\log B$
3. $\log A^{y}=y \cdot \log A$

Lograr: Kerfi par sem hægt er ađ skrifa allar tölur sem veldi međ grunntöluna 10 eðа e

Lograjöfnur: Jöfnur sem leystar eru međ ađstoð logra og logareglna

Náttúrulegir lograr: Lograr = ln međ grunntöluna $e=2,718281828$..

10 logri: Lograkerfi me才 grunntöluna $10 \log A=10^{x}$

Veldisvöxtur: Ferill sem vex hægt í byrjun en fer síðan hrađvaxandi

Veldisföll: $y=a^{x}$

Veldareglur:

1. $a^{x} \cdot a^{y}=a^{x+y}$
2. $a^{x} / a^{y}=a^{x-y}$
3. $\left(a^{x}\right)^{y}=a^{x \cdot y}$
